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Abstract. As students work through online learning systems such as the Reasoning Mind blended 

learning system, they often are not confined to working within a single educational activity; 

instead, they work through various different activities such as conceptual instruction, problem-

solving items, and fluency-building games.  However, most work on assessing student knowledge 

using methods such as Bayesian Knowledge Tracing has focused only on modeling learning in 

only one context or activity, even when the same skill is encountered in multiple different 

activities. We investigate ways in which student learning can be modeled across activities, towards 

understanding the relationship between different activities and which approaches are relatively 

more successful at integrating information across activities. However, we find that integrating data 

across activities does not improve predictive power relative to using data from just one activity. 

This suggests that seemingly identical skills in different activities may actually be cognitively 

different for students. 
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1. Introduction 

Increasingly, online learning environments such as blended learning environments 

assess students as they are learning, including problem-solving environments 

(Razzaq et al., 2007; Koedinger & Corbett, 2006), simulation microworlds 

(Gobert et al., 2013; Quellmalz, Timms, and Schneider 2009), action-style games 

(Lomas et al. 2012), and game-based virtual environments (Baker and Clarke-

Midura 2013; McQuiggan et al. 2008). These assessments are becoming 

increasingly effective, and may even be reaching asymptotic performance for 

specific types of assessment, such as assessing a single skill in online problem-

solving (see Pardos et al., 2011). Some online assessments are becoming 

sufficiently high-quality to be able to predict external measures such as grade 

point average (Wüstenberg, Greiff, and Funke, 2012) and standardized exam 

performance (Pardos et al., 2013). 

However, current online assessment is typically limited to the context of 

one learning environment. As a student practices a skill, it is considered in 

isolation within the current learning environment. The possibility that the student 

is gaining proficiency at the skill in other contexts, in between practice 

opportunities with the current environment, is sometimes acknowledged but not 

explicitly modeled. This limitation was not serious a decade ago, when students 

typically used a single online learning environment in a concentrated fashion; but 

as students increasingly study the same topic in different activities and contexts, 

this limitation may be slowing the adaptivity of online learning systems. Recent 

work has created single infrastructure with the capacity for bringing information 

about a single student‘s learning in multiple online learning systems together 

(Archibald & Poltrack, 2011), but the algorithmic methods to actually integrate 

that information together, and for one system to effectively utilize evidence from 

a different online learning system, remain lacking.  

Indeed, the entire goal of most modern learning environments is not just to 

produce learning and improved performance just within that system, but to 

produce robust learning that is retained over time and generalizes to new contexts 

(Koedinger, Perfetti, and Corbett 2012). There is evidence that the skills that are 

assessed in many of these environments are not just specific to a single learning 

environment but can generalize outside of them. Many of the skills currently 

being assessed are cross-curricular (Greiff and Funke 2009) -- that is to say skills 
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that are relevant and useful across multiple disciplines or situations (e.g., complex 

problem solving). For instance, the science inquiry skills measured by Gobert et 

al. (2013), Baker and Clarke-Midura (2013), and Molnár, Greiff, and Csapó 

(2013) manifest in a wide range of learning environments and real-world 

situations.  

Some researchers have explicitly looked at whether skills transfer between 

two contexts. For instance Baker, Gowda, and Corbett (2011) developed an 

automated detector that can predict, from learning of a skill within an online tutor, 

how successful the student will be at learning the next skill from a paper 

curriculum. This detector utilized information on the meta-cognitive behaviors 

students demonstrated during learning, and performed significantly better than 

skill assessment alone. Also, Schwonke and colleagues (2009) found a significant 

relationship between procedural transfer performance and principle-based self-

explanations, as well as goal-operator combinations, suggesting that different 

learning approaches (principle-oriented or solution-oriented) produce different 

patterns in transfer performance.  

Despite the fact that skill can transfer outside of learning environments, 

and many students use multiple different kinds of learning environments, thus far 

the development of skill in multiple contexts, environments, or activities is not 

explicitly modeled in existing online learning environments. In fact, this has not 

yet been done as far as we know, even within a single learning system that has 

different types of learning activities, although there has been work to model 

transfer between different versions of the same activity where different 

information is present as well as the core information (Maass & Pavlik, 2013).   

Within this paper, we study how to most effectively model student 

learning that is being acquired in multiple activities in an interleaved fashion. In 

specific, we look at the learning of over a hundred skills, occurring within three 

activities, of fundamentally different design but involving the same knowledge 

components (e.g. skills and concepts). Our goal is to answer the research question, 

―What formalism best accounts for the learning of the same skill occurring across 

different activities?‖, or more concretely, ―Will a student‘s learning of a 

knowledge component in one context during authentic learning translate to 

superior performance on future applications of that knowledge component in other 

contexts?‖ 
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It is known that learning does indeed transfer between activities in many 

cases. Gick and Holyoak (1980), for example, observed that college students were 

able to apply problem-solving strategies generated in prior tasks to a novel, 

semantically unrelated task even where no prompting of transfer was given. Chen 

(1996) reported equivalent transfer of problem solving approaches in children 

aged 5 to 8, with a combination of superficial (i.e. solution-irrelevant), structural 

(i.e. solution-relevant), and procedural (i.e. solution-relevant, process features) 

links between target and source used by participants to facilitate transfer. 

Similarly, Gentner, Loewenstein, and Thompson (2003) observed that college 

students were able to transfer negotiation strategies learned from prior business 

cases to new instances, and where multiple solutions were possible, solutions that 

were consistent with approaches learned earlier were more likely to be selected.  

While such studies successfully identified transfer in smaller-scale, 

laboratory settings, more recent research has revealed transfer of cognitive skills 

in larger-scale and more externally valid educational environments (i.e. authentic 

classroom learning). For example, Rittle-Johnson and Star (2007) examined 

transfer in the classroom, confirming transference of mathematical skills as well 

as defining conditions under which transfer is most successful. Where seventh-

graders were taught to compare and contrast different solution approaches they 

were able to apply learned strategies to novel problems. Students who were 

instructed to learn through repeated study of the same solution method across 

different questions were also able to solve novel problems but with less accuracy.  

Conditions of transfer have been further studied in middle-school equation 

solving. Although all students demonstrated transfer of learned skills to solving of 

problems with novel features, students were more likely to be able to transfer 

knowledge between context when they learned to compare different solution 

methods, as opposed to comparing similar solution methods and/or different 

problem types. This activity led to better-developed conceptual knowledge and 

fluency, and in turn to enhanced transfer (Rittle-Johnson & Star, 2009). Consistent 

results have been found in middle school physics students, with superior transfer 

observed where learning was geared towards developing conceptual knowledge 

(Schwartz, Chase, Oppezzo, & Chin, 2011), and second-graders learning 

arithmetic where emphasis of fluency/flexibility of application also supported 

transfer (Blöte, Van der Burg, & Klein, 2001). More thorough conceptual 
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knowledge of a domain and greater capacity to abstract and selectively apply 

learning to novel and varied situations, are thus integral components of transfer. In 

addition, more thoughtful meta-cognitive behaviors during learning can also 

support a student in developing learning that will transfer (Baker, Gowda, & 

Corbett, 2011). These findings have contributed to the Pittsburgh Science of 

Learning Center theoretical framework, which argues that conceptual 

understanding, fluency, and successful meta-cognition lead to generally more 

robust learning, which transfers, is associated with more successful future 

learning, and which is retained over time (Koedinger, Corbett, & Perfetti, 2011).  

However, the research question of interest for this paper is not whether 

learning transfers between activities (as there is a lengthy literature, much more 

extensive than the papers reviewed here, attesting that it can do so in many 

contexts), or what cognitive mechanisms lead to this transfer, but specifically 

what modeling formalism best accounts for learning occurring in multiple 

activities in an interleaved fashion.   

We study the issue of whether transferring information about student skill 

across activities leads to better prediction of performance within the context of a 

standard algorithm for student modeling, Bayesian Knowledge Tracing (Corbett 

and Anderson 1995), to track student development of specific cognitive skills 

across all three activities. In recent years, Corbett and Anderson‘s Bayesian 

Knowledge Tracing model (Corbett and Anderson 2008) has been used to model 

student knowledge of a variety of types in a variety of systems, including tutors 

for mathematics (Koedinger 2002), computer programming (Corbett and 

Anderson 2008), scientific inquiry skill (Sao Pedro et al., 2013), and reading skill 

(Beck and Chang 2007). BKT is statistically equivalent to both a Hidden Markov 

Model, and to a two-node Dynamic Bayesian network (Reye 2004). Bayesian 

Knowledge Tracing (BKT) keeps a running assessment of the probability that a 

student currently knows each skill, continually updating the estimate based on 

student behavior. BKT is known to be effective, comparable to any other 

algorithm currently in active use (Pardos et al., 2011). BKT can predict future 

student performance within a given activity (Corbett & Anderson, 1995; Baker et 

al., 2011; Pavlik et al., 2011), can predict post-test use of the same skill in other 

modalities (Corbett & Anderson, 1995; Corbett & Bhatnagar, 1997; Sao Pedro et 

al., 2013), and when applied to data from an entire year of mathematics 
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instruction, BKT can predict standardized exam scores (Feng, Heffernan, & 

Koedinger, year; Pardos et al., 2013) and future college attendance (San Pedro et 

al., 2013). Other algorithms have in some cases been used to model strength of 

knowledge for fluency (e.g. Pavlik & Anderson, 2008), but this achieves a 

substantially different goal than BKT, which measures whether a skill or concept 

is known at all. In addition, Cognitive Mastery Learning built on top of Bayesian 

Knowledge Tracing has been shown to significantly improve student learning 

(Corbett, 2001). In one of the few examples of the use of BKT or similar models 

to study learning across contexts, Sao Pedro et al. (2013) used BKT to model 

science inquiry skills such as designing a controlled experiment across two 

different scientific concepts taught in the same fashion. We extend this work by 

exploring transfer in a broader way, extending BKT to track student skill across 

three different types of activities that teach the same skills in substantially 

different fashions, and examine which of several possible model variants is most 

effective for doing this. In Bayesian Knowledge Tracing, below, we discuss the 

model variants that will be analyzed, and make an explicit hypothesis for which 

model variant will be most effective. 

By studying how to most effectively track student skill across multiple 

activities, we can provide more accurate and complete assessment to teachers. In 

addition, better assessment of this sort will lead to more efficient optimization of 

student learning experiences, since better knowledge estimates lead to more 

targeted amounts of practice on each skill (cf. Cen, Koedinger, and Junker 2007). 

2. Reasoning Mind 

The work presented in this paper is conducted in the context of Reasoning 

Mind Genie 2, a blended learning mathematics curriculum for elementary and 

middle school students (current offerings cover the second through the sixth 

grades), which is implemented within classrooms with a teacher present. 

Reasoning Mind combines extensive professional development, a rigorous 

curriculum drawing from successful curricular design in Russia, and a game-like, 

internet-based interface. Reasoning Mind is designed to be used by students 

working independently (although in practice, as in most blended learning 

curricula, there is some degree of collaboration – cf. Schofield, 1995). The 

students‘ mathematics teacher was present in the classroom. The primary role of 
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the teacher in a Reasoning Mind classroom is performing interventions; teachers 

conduct pre-planned interventions based upon the data provided by the system, as 

well as assisting struggling students. 

Student learning in Reasoning Mind takes place in ―RM City,‖ a virtual 

city where students engage in learning activities in different ―buildings.‖ The 

primary mode of study for students is ―Guided Study,‖ wherein they are guided by 

a pedagogical agent named ―Genie‖ through a series of learning objectives. It is 

used by approximately 100,000 students a year, primarily in the Southern United 

States. The fifth and sixth grade curricula are ―core‖ curricula; they replace the 

traditional mathematics class and are generally used for the students‘ entire 

scheduled mathematics instruction time, usually 3-5 days per week for 45-90 

minutes each day. 

  

Figure 1. Examples of Theory items. 
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Figure 2. Example of a Problem. 

 

 

Figure 3. Example of a Speed Game item.  The green bar on the left side of the image is a timer, 

and the icons on the right are reminders that Speed Game items are intended to be solved mentally. 

 

Reasoning Mind has three types of activities where student knowledge of 

specific skills can be assessed: conceptual instruction (―Theory‖ items), and 

problem-solving (―Problems‖), and tests of fluency presented in a game format 

(―Speed Games‖). Theory items are exercises included during the instruction 

presented to the student, and are intended to help the student gauge his or her 
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understanding of the material.  For example, the image on the left in Figure 1 

presents an instruction for finding an unknown factor and asks the student to show 

how that would be done using a concrete example; in the image on the right, a 

solution to an equation is found, and the student is asked to identify it.  Problems 

are sequences of items given after the instructional block.  They have varying 

levels of difficulty, but are intended to help the student practice and refine his or 

her knowledge; Figure 2 shows a multi-step problem involving numbers and 

operations.  Finally, Speed Games are timed, mental math problems which are 

intended to help the student develop fluency in mathematical operations with 

which they should already be proficient.  An example is shown in Figure 3, which 

presents relatively simply multiplication problems to the student but requires them 

to answer in a very limited amount of time. 

The path of a student working through a Reasoning Mind objective is as 

follows: first, the student is given a set of warm-up Problems, which are tests of 

knowledge that is prerequisite to the objective being covered.  Next, the student is 

presented with one or more section of Theory, during which they may be asked 

questions which help them gauge their progress.  Finally, they progress through 

up to three levels of problems: each student must solve a set of the easiest 

problems, with more challenging problem sets being presented depending on their 

accuracy and their progress through the curriculum.  Speed Games occur 

primarily within the warm-up section, but may also appear within the Theory 

section (when they serve an instructional purpose) or within the lowest-level 

block of Problems after the Theory section. 

The structure of Reasoning Mind lessons was developed primarily by 

expert Russian mathematics teachers.  The Russian mathematics curriculum is 

among the strongest in the world (cf. Milgram 2005), with, in particular, very high 

content knowledge among middle school mathematics teachers (Tatto et al. 2009), 

and thus makes an appropriate choice on which to base a learning system such as 

Reasoning Mind.  Reasoning Mind employs very experienced mathematics 

teachers and utilizes cognitive modeling approaches to model, as faithfully as 

possible, their classroom practices (Khachatryan et al., in press). 

Russian teachers begin each day with a warm-up activity, which is usually 

a timed session of mental math.  These activities are modeled in the Reasoning 

Minds system as Speed Games, which are simply timed sequences of mental math 
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(or other fluency practice) items in an appealing visual form.  These warm-ups 

serve two purposes: they prepare students for the coming material in a process the 

Russian teachers explicitly refer to as ―activation of prior knowledge,‖ and they 

help the student to develop automaticity and fluency, which is seen as an integral 

part of concept mastery in Russian curricula. 

The Theory section is conceptual instruction; it is the translation of 

teachers‘ classroom instruction practices to a computer interface.  Because 

classroom instruction is very interactive, the Theory section contains frequent 

questions, with different student responses triggering different responses by the 

system: for example, an incorrect answer will trigger the presentation of a detailed 

solution to the student, and particular incorrect answers that can be interpreted as 

evidence of misconceptions result in targeted feedback.  Russian teachers 

implement mastery learning (cf. Bloom, 1968): students are expected to master 

each concept before moving on to more advanced tasks.   They check student 

mastery by requiring students to perform to at least a minimal standard on 

demonstration of learning tasks such as tests and quizzes.  The Problem section is 

the online representation of such learning tasks; students must pass at least the 

most basic level of Problems in order to progress to the next objective. 

3. Method 

 3.1 Participants 

 

The data collected for this paper were from students using the Reasoning 

Mind fifth grade curriculum in the classroom as their regular curriculum, 5 days a 

week.    

To increase the probability of model generalizability, data was collected 

from a diverse sample of students in six schools, broadly representative of the 

population currently using Reasoning Mind. Five of the six schools were in the 

Texas Gulf Coast region.  Three of these Texas schools were in urban locations 

and served economically disadvantaged populations (defined as a high proportion 

of students receiving free or reduced lunch); of these three, two served 

predominantly African-American student populations, and one served a 

predominantly Hispanic student population. The other two schools in this region 

were in suburban locations, one serving mostly White students, and the other with 
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a mix of student ethnicities; both of these schools had a lower proportion of 

economically disadvantaged students. The sixth school was a rural school in West 

Virginia, with an economically disadvantaged, majority White population. 

We collected these students‘ entire data across the entire year. The total 

data set involved 1,951,829 distinct actions across 462 students, across 172 

knowledge components (KCs, defined below), within 45 content objectives, over 

the course of the entire fifth grade year.  

 

3.2 Bayesian Knowledge Tracing 

Corbett and Anderson‘s Bayesian Knowledge Tracing model (Corbett and 

Anderson 2008) computes the probability that a student knows a given skill at a 

given time, combining data on the student‘s performance up to that point with 

four model parameters. In the model‘s canonical form, each problem step in the 

tutor is associated with a single cognitive skill. The model assumes that at any 

given opportunity to demonstrate a skill, a student either knows the skill or does 

not know the skill, and may either give a correct or incorrect response (help 

requests are treated as incorrect by the model). A student who does not know a 

skill generally will give an incorrect response, but there is a certain probability 

(called P(G), the Guess parameter) that the student will give a correct response. 

Correspondingly, a student who does know a skill generally will give a correct 

response, but there is a certain probability (called P(S), the Slip parameter) that 

the student will give an incorrect response. At the beginning of using the tutor, 

each student has an initial probability (P(L0)) of knowing each skill, and at each 

opportunity to practice a skill the student does not know, the student has a certain 

probability (P(T)) of learning the skill, regardless of whether their answer is 

correct. 

 The system‘s estimate that a student knows a skill is continually updated, 

every time the student gives a first response (correct, incorrect, or a help request) 

to a problem step. First, the system re-calculates the probability that the student 

knew the skill before the response, using the evidence from the response (help 

requests are treated as evidence that the student does not know the skill), using the 

first two equations of Figure 1. Then, the system accounts for the possibility that 

the student learned the skill during the problem step, using the third equation of 

Figure 1. Within the Cognitive Mastery algorithm used in most Cognitive Tutors 
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(Corbett and Anderson 2008), the student is assigned additional problems on skills 

that the system does not yet believe that the student has learned (e.g. skills that the 

student has less than 95% probability of knowing). 

 

Figure 1. The equations used to predict student knowledge from behavior in 

Bayesian Knowledge Tracing. 

 

 The four parameters in Bayesian Knowledge Tracing are fit, for each skill, 

using data from students using that skill within an intelligent tutor. The goal 

during parameter fitting is to figure out which combination of parameters best 

predicts the pattern of correct and incorrect responses in the existing data, and 

then to use that model to make predictions about new students‘ knowledge as they 

use the tutor. 

Within this paper, we study sixteen model variants of BKT, expressing a 

range of ways to model skill manifesting across three different activities.  For 

each activity, we consider three different ways to model how student skill learning 

in this activity may influence learning and performance in the other activities.  

Each activity can be 1) fully included in the model (with student performance 

resulting in changing a unified estimate of student knowledge across activities, 

and each encounter with the activity serving as an opportunity for the student to 

learn), 2) only partially included (with student knowledge treated as separate in 

different activities, but each encounter still potentially causing student learning 

across activities), or completely separated from other activities.  Table 2 below 

indicates how this set of possibilities across activities is mapped in 16 possible 

models. We hypothesize that uniform application of the full BKT model across 

the three activities will yield the best result, as this variant makes full use of all 

student data for each knowledge component.  
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3.3 Data Set 

A collection of BKT models was constructed for Basic II, Reasoning Mind‘s fifth 

grade curriculum, which is made up of 45 distinct objectives, each taking 1-2 

hours for the student to complete.  Items in this curriculum were labeled with 172 

knowledge components (KCs) by knowledge engineering.  As is standard for 

Bayesian Knowledge Tracing, only first attempts at each item were included, 

regardless of what type of item it was.  As discussed above, the full data set 

consisted of 1,951,829 distinct actions made by 462 students over the course of 

the year. 

Each action in the log was labeled with the item type, either Problem, 

Speed Game, or Theory.  The data set contained 814,805 Problem items, 358,749 

Speed Game items, and 778,275 Theory items.  Not all Theory actions within the 

log corresponded to student correct or incorrect attempts; approximately 26% of 

the time, they just represented presentation of the information to the student.  In 

these cases, for the purposes of BKT, each action could be treated as an 

opportunity for the student to learn (and in this case, each action would affect the 

student‘s knowledge estimate for the relevant KC via the transition probability 

P(T) ), but because there was no student action that could be marked right or 

wrong, this 26% of Theory actions could not be used to update  the probability of 

student knowledge based on student performance. Note that in the remaining 74% 

of cases, the student does provide a correct or incorrect response, and BKT can be 

affected in both fashions. 

3.4 Fitting BKT Parameters 

A variation on Baker et al.‘s Brute Force BKT model fitting code (Baker et al. 

2010) was used.  In the original Brute Force method, a very large number of 

combinations of BKT parameters are tested (down to a resolution of 0.001).  

While this is feasible when fitting a traditional BKT model with four parameters 

per KC, its running time is exponential in the number of parameters per KC, and 

thus takes a very large amount of computational time for larger numbers.  Because 

this study involved fitting up to ten separate parameters (see below), a simulated 

annealing procedure was used rather than brute force.  In this algorithm, BKT 

algorithms are initially seeded with random values.  An initial RMSE value is 
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calculated for using that set of parameters used to predict student performance via 

BKT. 

For each step in the process, a random one of these values is incremented 

or decremented by a random amount between 0 and 0.05, and a new RMSE value 

is calculated.  This change in value can then be accepted with probability 

 accept( ̅old  ̅new)     *      (
 ( ̅old)   ( ̅new

 
)+   

In this equation,  ̅old is the original set of parameters,  ̅new is the set of parameters 

after the random change,  ( ̅) is the RMSE of student predictions using the 

parameter set  ̅ in BKT, and   is an adjustable parameter.  This parameter was 

initiated to 0.005, and halved every 10,000 annealing steps.  If the move is 

accepted, the process is repeated with the new parameter set; otherwise, a new 

random change on the original set is attempted. 

 The parameter set resulting in the lowest achieved RMSE is tracked.  

Every 10,000 annealing steps, the current lowest RMSE is compared to the best 

RMSE at the end of the previous 10,000 steps; if it is unchanged, calculation is 

assumed to have converged and annealing ends. 

 This method produces results as good as those produced by the original 

Brute Force method, but significantly faster (in about 2% of the total time).  

Because of this speed, despite the fact that the   parameter above allows for 

escaping local minima, this method could be coupled with random restarts to 

ensure that a global minimum is found; in practice, this was found to be 

unnecessary for the data set and parameters analyzed here. 

 To evaluate model fit, model predictions were generated using the fit 

parameters, and A′ was calculated.  A′ is the probability that, given one correct 

and one incorrect student attempt, the model can correctly identify which is 

which.  It is mathematically equivalent to the area under the ROC curve (AUC) 

used in signal detection and to W, the Wilcoxon statistic (Hanley and McNeil 

1982).  A value of 0.5 for A′ indicates performance exactly at chance, and a value 

of 1 indicates perfect performance.  In these analyses A′ was calculated at the 

level of students, rather than actions, and all reported values are computed using 

ten-fold cross-validation.  A′ was calculated using Baker et al.‘s ―A′ per Student‖ 

code (Baker et al. 2008), available from 

http://www.columbia.edu/~rsb2162/edmtools.html. Throughout this paper, we 
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also use calculations of statistical significance computed using this package. For 

statistical significance, a separate statistical comparison was made for each 

student using a Z test, and then these comparisons were aggregated using 

Stouffer‘s Z. Using this approach addresses non-independence assumptions better  

than conducting a single Z test across all data points together -- see discussion of 

this issue in (Baker et al., 2008). 

 To ensure that this method produces good results, it was applied to known 

data sets and compared with the result from the Brute Force Algorithm.  The 

―Algebra I 2006-2007‖ and ―Algebra I 2008-2009‖ used in the 2010 KDD Cup 

were retrieved from http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp, 

and in each case the ―training‖ data set was used.  These data sets contained 

student logs from the Algebra I Cognitive Tutor for the indicated school years. 

The results are shown in Table 1.  For each data set, the simulated annealing 

algorithm took approximately 2% of the total computational time of the brute 

force algorithm, and produced predictions that were at least as accurate, as 

determined by ten-fold cross-validated, student-level A′.  In fact, while the 

difference in A′ values for the Algebra 2006-2007 data set was not statistically 

significant (p > 0.1), for the Algebra 2008-2009 data set, the result of the 

simulated annealing algorithm was better with p < 0.001.  The better performance 

may be due to the fact that the simulated annealing algorithm is not constrained to 

a grid, and so is able to more precisely determine the optimal parameters (but is 

less prone to local minima that the expectation maximization algorithm).  

 

Table 1 

Comparison of Results of Simulated Annealing and Brute Force Fitting BKT to 

KDD Cup Data 

Data Set 
N Time ratio 

Simulated 

Annealing 

A′ 

Brute 

Force 

A′ 

Algebra I 2006-2007 1,852,340 0.019 0.6705 0.6711 

Algebra I 2008-2009 8,648,976 0.018 0.7485 0.7475 

Note. N is the total number of actions in the data set.  The time ratio is total computational time for 

fitting BKT parameters using simulated annealing vs. brute force.  
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3.5 Different Item Types 

There are many different ways that the separate item types described above could 

be treated in applying BKT to the Reasoning Mind data set.  For example, the 

item type label could be ignored and all items could be treated in the same 

manner, or some but not all parameters could be fit differently for different types 

of items, or some subset of item types could be ignored altogether.  In this paper, 

sixteen different scenarios for treating separate item types are considered. 

The scenarios are shown in Note. In the columns labeled ―Learning Opportunity,‖ 

an ‗X‘ indicates whether Speed Games (SG) and/or Theory (T) items were 

included as opportunities to learn – that is, there was a probability that the student 

would transition from not knowing to knowing the skill each of those items.  The 

―Performance Included‖ column indicates whether the estimate of student 

knowledge was updated based on performance on the indicated item types.  The 

two rightmost columns indicate whether separate transition probabilities P(T), in 

the first, and/or guess probabilities P(G) and slip probabilities P(S), in the second, 

were fit for each item type (if not, a single value was applied across all item 

types). 

Parameters were fit and evaluated under ten-fold cross-validation.  A′ values 

were calculated by evaluating performance of the resulting BKT model on the 

Problem, Speed Game, and Theory items independently, and calculated at the 

student level. 
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Table 2 

Summary of BKT Modeling Scenarios 

 

Learning Opportunity Performance Included Separate 

p(T) 
Separate 

p(G), p(S) SG T SG T 

1       

2 X      

3 X    X  

4 X  X    

5 X  X  X  

6 X  X  X X 

7  X     

8  X   X  

9  X  X   

10  X  X X  

11  X  X X X 

12 X X     

13 X X   X  

14 X X X X   

15 X X X X X  

16 X X X X X X 

Note.  Problems were always included as learning opportunities and performance on problems was 

always included, and therefore were not included in this table. See the text for a more detailed 

explanation of this table.   

4. Results 

Error! Reference source not found. summarizes the resulting model 

goodnesses for each of the scenarios described above.  Ten-fold cross-validated, 

student-level A′ values between 0.633 and 0.664 were obtained on Problem items.  

The highest A′ on Problems was attained for Scenario 2, which included Problems 

and Speed Games as learning items (using the same transition probability P(T) for 

both), but updated BKT estimates based on performance only for Problems. 

Scenario 2 was very slightly higher than Scenario 1.  The A' value for Scenario 2 

was statistically significantly higher than nine scenarios, specifically those that 

incorporated performance on non-problem items. It was not statistically 

significantly higher than the A' in the scenarios where non-problem item 

performance was not considered. Scenarios 1, 3, and 8 also performed statistically 

significantly better than the nine scenarios which included performance on Speed 

Games or Theory.  This set of findings suggests that students can learn problem-

solving skill from completing the Speed Games, but that actual performance on 

the Speed Games is not relevant to success in the problems. Completion of the 
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Theory problems does not seem to influence student success on the Problems in 

either fashion. These results broadly contradict our initial hypothesis, that 

modeling student skill within one activity and transferring that information to a 

second activity would lead to better prediction of student performance within the 

second activity. 

Ten-fold cross-validated student-level A′ values between 0.567 and 0.679 

were obtained on Speed Games items.  Note that A′ was not calculated for Speed 

Games for all scenarios; in particular, if performance on Speed Games was not 

used to drive Bayesian updating, then A′ was not computed. The best-performing 

models for Speed Games was Scenario 4, which updated Bayesian estimates 

based on performance on both the Speed Games and Problems, as well as 

applying P(T) whenever either a Speed Game or Problem was completed. 

Scenario 5 was only very slightly lower than Scenario 4, suggesting that whether 

or not a different P(T) was used for Speed Games or Problems (scenario 4 versus 

5) had little impact on A′. Performance decreased when data from Theory 

problems was incorporated, and when separate P(G) and P(S) were used for the 

Speed Games versus the Problems, probably due to over-fitting. When computing 

A′ for the Problems, scenarios 4 and 5 were only slightly (though statistically 

significantly) worse than scenario 2, the best scenario for Problems, at 0.655 and 

0.656 compared to 0.664. 

Ten-fold cross-validated student-level A′ values between 0.613 and 0.655 

were obtained on Theory items.  Note that A′ was not calculated for Theory for all 

scenarios; in particular, if performance on Theory was not used to drive Bayesian 

updating, then A′ was not computed. The best-performing scenario for Theory 

was scenario 11, which updated Bayesian estimates based on performance on both 

the Theory and Problems, as well as applying P(T) whenever either a Theory 

section or Problem was completed. In this model, there were separate P(T), P(G), 

and P(S) for Theory and Problems, suggesting that the Theory sections and 

Problems have very different properties. Incorporating data from Speed Games 

led to only minor degradation to performance on Theory (0.648 versus 0.655), but 

using the same P(G) and P(S) for all three types of data led to more substantial 

degradation (0.613). However, using the same P(G) and P(S) for both Theory and 

Problems led to less degradation (0.641) than using the same P(G) and P(S) for all 
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three. Also, using the same P(T) for both Theory and Problems led to only minor 

degradation (0.642). 

 

Table 3 

Summary of Results for Each Modeling Method 

 

Parameters 

per KC 

Number of 

relevant 

items  

A′ 

(Problems) 

A′ 

(Speed Games) 

A′ 

(Theory) 

Problems only 

1 4 3527 0.664 n/a n/a 

Problems and Speed Games 

2 4 3527 0.664
a
 n/a n/a 

3 5 3527 0.660
 a
  n/a n/a 

4 4 4304 0.655
b
 0.679

 a
 n/a 

5 5 4304 0.656
 b
 0.679

 a
 n/a 

6 7 4304 0.648
 b
 0.672

c
 n/a 

Problems and Theory 

7 4 3527 0.662
 a
  n/a n/a 

8 5 3527 0.661
 a
  n/a n/a 

9 4 5212 0.642
 b
 n/a 0.642

d
 

10 5 5212 0.643
 b
 n/a 0.641

d
 

11 7 5212 0.641
 b
 n/a 0.655

 a
  

Problems, Speed Games, and Theory 

12 4 3527 0.662
 a
  n/a n/a 

13 6 3527 0.660
 a
  n/a n/a 

14 4 5212 0.636
 b
 0.669

 d
 0.638

e
 

15 6 5212 0.640
 b
 0.567

 b
 0.613

 b
 

16 10 5212 0.633
 b
 0.675

 c
 0.648

 c
 

Note. Number of relevant items refers to the average number of items per student which were used 

in calculating the estimates of student knowledge.  Model goodness is measured by cross-

validated, student-level A′ on each of Problems, Speed Games, and Theory items. ―N/a‖ indicates 

that performance on the specified item type was not included in the model, making it inappropriate 

to compute performance for this item type on this model.  

a 
Performed statistically significantly better than 

b
 and 

d
. 

b 
Performed statistically significantly worse than 

a
, 

c
, 

d
, and 

e
. 

c
 Performed statistically significantly better than 

b
 and 

e
. 

d 
Performed statistically significantly worse than 

a
 but better than 

b
. 
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e Performed statistically significantly worse than 
c
 but better than 

b
. 

 

 

 

 

Figure 4. The ten-fold cross-validated, student-level A′ on Problems as a function of the total 

number of relevant items for each model.  Each dot represents a scenario; the line is a linear fit 

with R
2
 = 0.95. 

 

To understand the impact of incorporating additional information on the system‘s 

ability to assess student knowledge on Problem items, A′ values on Problems 

were compared to the number of items on which the estimate of student 

knowledge was updated based on student performance (e.g. the number of items 

relevant to each model).  The result is shown in Figure 4.   A very strong negative 

correlation was found, with R
2
 = 0.95.  This indicates that using additional 

information is not beneficial for modeling student knowledge as relevant to the 

Problems, although the magnitude of the performance reduction is small. It is 

worth noting that this is not just a function of having more parameters. When A′ 

values on Problems were compared to the number of parameters per KC, a 

negative correlation was again found, but with a much smaller R
2
 = 0.29.  

5. Discussion and Conclusions 

In this paper, we extend Bayesian Knowledge Tracing (BKT), a classic student 

modeling algorithm, to track student knowledge on tests of fluency (―Speed 

Games‖), conceptual instruction (―Theory‖ items), and problem-solving 

(―Problems‖).  We found that for the purposes of predicting student performance 

0.63

0.64

0.65

0.66

0.67

3000 4000 5000 6000

A
′  

Items Outcomes per Student 

Goodness of Fit vs. Item Outcomes 
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on Speed Games, they were most effectively modeled using the same BKT 

parameters as Problems; conversely, Theory items were best predicted using a 

different set of parameters. In specific, the use of separate P(G) and P(S) values 

for Speed Games (when not including Theory) led to a decrease in A′ on Speed 

Games, while the opposite was true for Theory.  This seems to indicate that the 

skills being learned in Speed Games have similar properties to the skill being 

learned in Problems with regards to knowledge tracing, while Theory items have 

some very different properties.  

One possible explanation for these differences is the nature of the items.  

Theory items are given in the course of instruction on a new topic, and are given 

early in the student learning a topic; they are used primarily for the student to 

gauge his or her progress in learning the topic and secondarily to drive the 

direction of the instruction provided by the system.  In contrast, both Problems 

and Speed Games occur later in the learning process: they are intended to help a 

student refine and solidify knowledge that the student has already begun to attain. 

However, best performance was obtained if each type of item was treated 

as representing parallel performance, e.g. not adjusting student knowledge on 

Problems based on performance in Speed Games. In particular, the more items 

which are considered for skill assessment beyond Problems, the worse prediction 

of student performance on Problems becomes, with R
2
 = 0.95. This combination 

of findings suggests that the corresponding skills (between Problems and Speed 

Games) are similar but that knowledge is not transferring between these 

situations.   

On the whole, these results suggest that developing models which can 

generally model student skill and knowledge across a variety of contexts and 

problem types is a challenging problem. The approach here was successful at 

articulating the differences between these three types of activities, but was not 

successful at actually creating a model general across them, that leverages 

information from all three activities in predicting each of them. At this point, it is 

not clear whether another approach could be successful at this goal, or whether the 

seemingly similar skills represented by each activity type actually do represent 

fundamentally different skills. Understanding better which of these hypotheses is 

correct would be valuable for better understanding not just student modeling of 

mathematical knowledge, but also the fundamental nature of what students are 
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learning in Reasoning Mind. A clear limitation to this work is its application 

solely in one learning system and set of activities. Prior work has shown that some 

unification of skills is possible in tracking the same science inquiry skill across 

different science content domains but in the same activity (e.g. Sao Pedro et al., 

2013). Figuring out how broadly skills can be unified within student models, and 

what factors inhibit or promote this process, will be an important area of future 

research, only feasible through studying these issues in a variety of contexts. 

Within the specific context of Reasoning Mind, a system currently being 

used at scale in U.S. classrooms, these results can provide guidance for 

determining the best method by which to trace student knowledge depending on 

the precise goal of the knowledge tracing application; for example, if one‘s goal is 

the most accurate prediction of student performance on Problems, then knowledge 

tracing using only Problems may be the best algorithm. This is useful information, 

to the degree that it helps to optimize student practice within each activity, helping 

improve learning and learning efficiency (Cen, Koedinger, & Junker, 2007). 

Indeed, even small improvements in knowledge estimation can have large benefits 

for optimizing practice, indicating that it is important in Reasoning Mind to 

optimize practice based on estimation specific to a given activity.  

However, there may be contexts in which more general methods are more 

appropriate, even if their internal predictive power is weaker.  For example, if the 

goal of a learning system is to predict robust learning that transfers to new 

contexts, then it is likely that a model taking into account a variety of contexts 

would more readily generalize.  For example, in long-term prediction of student 

success (e.g. Pardos et al., 2013; San Pedro et al., 2013), a more general model is 

likely to be more predictive in different activities. Similarly, a general estimate of 

student knowledge, independent of the specific activity, may be desired for the 

purpose of diagnosis and remediation of gaps and misconceptions in student 

knowledge.  Teachers may be more interested in generally knowing what skills 

students have, rather than how likely they are to succeed in specific activities. As 

such, a broader model, or one focusing on a different set of activities, may be 

most relevant in this case.  

In the long-term, the work presented here represents a step towards 

developing curricula that most effectively utilize and integrate multiple learning 
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activities, towards helping students develop robust and general mathematics 

knowledge and skill. 
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